Магниевые сплавы. Магний и его сплавы

Сплавы этой группы находят применение для получения изделий прессованием, прокаткой, вытяжкой. Обработку сплавов производят в горячем состоянии при 200-300 °С.

Основными легирующими элементами в сплавах служат алюминий до 15 %, медь до 5 % и магний до 0,05 % (табл. ниже).


Эти сплавы после обработки давлением обладают хорошими механическими свойствами и служат в некоторых случаях заменителями латуни. Высоколегированные сплавы обладают значительной прочностью при удовлетворительной пластичности. Цинковые деформируемые сплавы, за исключением сплава ЦА15, сильно изменяют ударную вязкость с понижением температуры, как показано ниже:


Система цинк-алюминий-медь

Сплавы цинка с алюминием и медью получили наибольшее распространение вследствие высоких механических свойств. Применяемые в промышленности сплавы в соответствии с их средним составом обозначаются литерами А и Б. Сплавы с повышенным содержанием алюминия относятся к группе А, а сплавы с повышенным содержанием меди - к группе Б. Процесс кристаллизации и структуру этих сплавов можно описать, используя проекцию поверхности ликвидуса, диаграммой состояния Zn-Al-Cu (рис. 12). На рис. 12 точка Е т является тройной эвтектической точкой. Состав эвтектики: 89,1 % Zn, 7,05 % А1 и 3,85 % Сu; температура плавления тройной эвтектики 377 °С.


В структуре сплава присутствуют n-фаза, двойная эвтектика (n + + а) и тройная эвтектика (n + а + е).

В сплавах с повышенным содержанием меди (например, сплав состава В на рис. 12) в отличие от предыдущего сплава первично кристаллизуется е -фаза, а затем двойная (n + е) и тройная (n+ е + + а) эвтектики.

Тройные сплавы системы Zn-А1-Сu, как и двойные цинк-алюминиевые сплавы, подвержены естественному старению. Эффект старения, связанный с изменением линейных размеров и свойств отливок, зависит от состава сплава. Особенно быстро эти процессы идут в сплавах, богатых алюминием. Изменение размеров цинковых сплавов в зависимости от содержания алюминия и меди при искусственном старении приведено на рис. 13. Примеси свинца, олова и кадмия также ускоряют изменения линейных размеров, вследствие чего отливки коробятся или даже растрескиваются. Влияние небольшого количества свинца на изменение размеров цинковых отливок, полученных литьем под давлением, из сплава Zn + 4%А1 + 1,2 %Сu показано на рис. 14.


В связи с этим для приготовления цинковых сплавов с алюминием и медью рекомендуется применять цинк повышенной чистоты с минимальным содержанием свинца, олова и кадмия.

Положительное влияние на цинковые сплавы оказывает магний в количестве 0,03-0,10%, который не только способствует замедлению процесса старения сплавов системы Zn-Al-Cu, но и увеличивает их прочность.

За счет применения цинка повышенной чистоты и присадки магния при изготовлении сплавов системы Zn-Al-Cu можно избежать межкристаллитной коррозии, а за счет правильного подбора состава сплава можно добиться, что изменения размеров в отливках станут практически несущественными.

Система цинк-магний

Магний в количествах до 0,1 % содержится практически во всех сплавах на основе цинка. Согласно диаграмме состояния (рис. 15) цинк образует с Mg 2 Zn 11 (гексагональная решетка) эвтектику при 367 °С и 3% Mg. Соединение Mg 2 Zn 11 образуется по перитектической реакции при 383 °С из MgZn 2 и остатков расплава. Растворимость магния в цинке весьма мала и при температуре эвтектики составляет около 0,15%. По мере понижения температуры растворимость магния уменьшается (при 200 °С 0,06 %, при комнатной температуре - около 0,005 %).


Магний повышает прочность и твердость цинка вследствие образования с ним химических соединений. Присадка магния способствует уменьшению межкристаллитной коррозии цинковых сплавов и уменьшает вредное влияние свинца и олова. При содержании до 0,1 % магний не оказывает влияния на жидкотекучесть цинка, однако при более высоких содержаниях оказывает oтрицательное влияние. Повышение содержания магния сверх 0,1 % ухудшает пластичность сплавов и повышает их горячеломкостъ, что может привести к образованию трещин в отливках.

Присадка в цинковые сплавы марганца, титана, кремния и других элементов способствует улучшению свойств цинковых сплавов.

Марганец подобно алюминию, но в меньшей степени, препятствует растворению железа в цинковых сплавах. Присадка марганца ослабляет сопротивление сплавов ударным нагрузкам, ухудшает литейные свойства и повышает хрупкость.

Титан измельчает структуру литого цинка и сплавов на его основе, а также резко увеличивает сопротивление сплавов ползучести в горячекатаных и отожженных полуфабрикатах, но практически не оказывает влияния на жидкотекучесть сплавов.

Администрация Общая оценка статьи: Опубликовано: 2012.08.14

Краткие обозначения:
σ в - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ 0,05 - предел упругости, МПа
J к - предел прочности при кручении, максимальное касательное напряжение, МПа
σ 0,2 - предел текучести условный, МПа
σ изг - предел прочности при изгибе, МПа
δ 5 ,δ 4 ,δ 10 - относительное удлинение после разрыва, %
σ -1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σ сж0,05 и σ сж - предел текучести при сжатии, МПа
J -1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T), [Дж/(кг·град)]
HV
- твердость по Виккерсу p n и r - плотность кг/м 3
HRC э
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

Магний обладает гексагональной плотноупакованной кристаллической решеткой. Ниже приведены некоторые свойства магния:

Поверхностное натяжение снижают добавки лития, кальция, сурьмы, стронция, свинца, висмута или бора. Чистый магний характеризуется высокой химической активностью и легко окисляется. У образующейся оксидной плены при температуре выше 450 °С отсутствуют защитные свойства. С повышением температуры скорость окисления возрастает, а при 623 °С магний воспламеняется в воздухе. Медь, никель, олово, цинк и алюминий увеличивают скорость окисления магния при повышенных температурах; свинец, серебро, кадмий и таллий почти не оказывают влияния, а церий и лантан несколько замедляют скорость окисления на воздухе.

С азотом при температуре выше 750 °С магний взаимодействует с образованием нерастворимого твердого и хрупкого нитрида, снижающего пластические свойства металла. С сернистым газом при 600-650 °С взаимодействие сопровождается образованием МgО, MgS0 4 и паров серы.

Магний в значительно большем количестве, чем алюминий, поглощает водород. С повышением температуры и давления над расплавом растворимость водорода увеличивается (табл.8).

Магний не взаимодействует с растворами едких щелочей, с керосином, бензином, минеральными маслами, устойчив по отношению и фторидам и плавиковой кислоте, но неустойчив в разбавленных минеральных кислотах. С водой магний интенсивно реагирует с выделением водорода, который часто является причиной взрывов из-за образования гремучего газа.

Таблица 8. Растворимость водорода а магниевом сплаве



ГОСТ 804-93 предусматривает выпуск трех марок первичного магния, различающихся содержанием примесей (табл.9).

Кроме примесей первичный магний в сотых и тысячных долях процента содержит натрий (до 0,01 %), калий (до 0,005 %), титан (до 0,014%), кальций, барий, стронций, галлий, водород, цинк, сурьму и другие элементы, а также оксид и хлорид магния.

Наиболее вредными примесями являются никель и железо. Они сильно снижают коррозионную стойкость магния. Ввиду малой растворимости в твердом магнии эти примеси при содержании более 0,01- 0,02%. выделяются в виде мельчайших частиц интерметаллида Mg 2 Ni и чистого железа и вызывают резкое усиление атмосферной коррозии за счет образования большого числа гальванических микропар.

Алюминий лучше всего упрочняет магниевые сплавы , но одновременно снижает их коррозионную стойкость. Алюминий образует с магнием твердый раствор. На диаграмме (рис.4), представляющей собой разрез по поверхности ликвидуса тройной диаграммы Mg-Al-Zn, показана растворимость алюминия и цинка в магнии при разных температурах. Алюминий в какой-то степени повышает жидкотекучесть магниевых сплавов. В европейские стандарты включен сплав MgAI9Zn


Таблица 10. Содержание основных компонентов и механические свойства магниевых сплавов


(или AZ-91) очень близкий по химическому составу к сплаву Мл5. Он содержит 8-9,5 % AI и рекомендуется для изготовления особо тонкостенных отливок. Многие фирмы используют сплав MgAl8Zn1 (или AZ-81). Оба сплава имеют почти одно и то же содержание основных компонентов и одинаковые механические свойства (табл.10).

Марганец (до 0,5 %) улучшает механические свойства, повышает жаропрочность и, что особенно важно, коррозионную стойкость магниевых сплавов. С уменьшением содержания алюминия в магниевом сплаве от 8 до 6 % влияние марганца на стойкость против коррозии усиливается.

Цинк увеличивает прочность, удлинение и жидкотекучесть магниевых сплавов, но значительно снижает их коррозионную стойкость. Обычно в технической литературе рекомендуют для литья под давлением сплавы Мл5 и Мл6. Сплав Мл6 отличается повышенным содержанием алюминия (9-11 %) и цинка (до 2%) для повышения литейных свойств сплава. Несмотря на более высокую жидкотекучесть, этот сплав неприемлем для литья под давлением из-за его чрезмерной хрупкости в горячем состоянии. Наилучшие сочетания механических свойств имеют сплавы, содержащие не более 0,3 % Zn.

В европейские стандарты включены магниевые сплавы, не содержащие цинка, предназначенные для изготовления отливок, работающих при больших ударных нагрузках: сплав MgAl6Mn или АМ-90 (5,5- 6,5%AI; 0,1-0,4 % Мп) и сплав MgAl4Sil или AS-41 (4-5 % AI; 0,2- 0,5 % Мп; 0,1—0,4 % Si). Относительное удлинение этих сплавов до 6- 8 %. Сплав MgAWSil отличается, кроме того, высоким сопротивлением ползучести при повышенных температурах.

Кремний (0,1-0,4%) увеличивает склонность магниевых сплавов к поглощению газов и образованию газовой поверхности в отливках. К тому же он усиливает ликвацию и усадку сплава. Поэтому сплав MgAl4Sil, содержащий кремний, требует тщательной дегазации, а отливки из этого сплава необходимо конструировать с учетом минимального затруднения усадки.

Министерство образования российской федерации

Новосибирский технологический институт

Московского государственного университета дизайна и технологии

Факультет заочного обучения и экстерната

Кафедра: «Машины и аппараты легкой промышленности»

Дисциплина: Технология конструкционных материалов

Тема: Цветные металлы и их сплавы

Обозначение: ЗО8073

Новосибирск – 2010

Введение

1. Медь и ее сплавы

1.1 Сплавы меди

1.1.1 Латуни

1.1.2 Бронзы

2. Алюминий и его сплавы

3. Цинк и его сплавы

4. Магний и его сплавы

4.1 Сплавы на основе магния

Заключение

Список использованных источников

Введение

Цветная металлургия – отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. По физическим свойствам и назначению цветные металлы условно можно разделить на благородные, тяжелые, легкие и редкие.

К благородным металлам относят металлы с высокой коррозионной стойкостью: золото, платина, палладий, серебро, иридий, родий, рутений и осмий. Их используют в виде сплавов в электротехнике, электровакуумной технике, приборостроении, медицине и т.д.

К тяжелым относят металлы с большой плотностью: свинец, медь, хром, кобальт и т.д. Тяжелые металлы применяют главным образом как легирующие элементы, а такие металлы, как медь, свинец, цинк, отчасти кобальт, используются и в чистом виде.

К легким металлам относятся металлы с плотностью менее 5 грамм на кубический сантиметр: литий, калий, натрий, алюминий и т.д. Их применяют в качестве раскислителей металлов и сплавов, для легирования, в пиротехнике, фотографии, медицине и т.д.

К редким металлам относят металлы с особыми свойствами: вольфрам, молибден, селен, уран и т.д.

К группе широко применяемых цветных металлов относятся алюминий, титан, магний, медь, свинец, олово.

Цветные металлы обладают целым рядом весьма ценных свойств. Например, высокой теплопроводностью (алюминий, медь), очень малой плотностью (алюминий, магний), высокой коррозионной стойкостью (титан, алюминий).

По технологии изготовления заготовок и изделий цветные сплавы делятся на деформируемые и литые (иногда спеченые).

На основании этого деления различают металлургию легких металлов и металлургию тяжелых металлов.

1. М едь и ее сплавы

Медь – металл красного, в изломе розового цвета. Медь относится к металлам, известным с глубокой древности.

Технически чистая медь обладает высокой пластичностью и коррозийной стойкостью, высокой электропроводностью и теплопроводностью (100% чистая медь-эталон, то 65%-алюминий, 17% железо), а также стойкостью против атмосферной коррозии. Позволяет использовать ее в качестве кровельного материала ответственных зданий.

Температура плавления меди 1083°С. Кристаллическая решетка ГЦК. Плотность меди 8,94 г/см 3 . Благодаря высокой пластичности медь хорошо обрабатывается давлением (из меди можно сделать фольгу толщиной 0,02 мм), плохо резанием.

Литейные свойства низкие из-за большой усадки.

На свойства меди большое влияние оказывают примеси: все, кроме серебра и бериллия ухудшают электропроводность.

Стоимость чистой меди постоянно повышается, а мировые запасы медной руды, по различным оценкам, истощатся в ближайшие 10-30 лет.

Медь маркируют буквой М, после которой стоит цифра. Чем больше цифра, тем больше в ней примесей. Наивысшая марка М00 – 99,99% меди, М4 – 99% меди.

В таблице 1 содержится информация по маркам меди в зависимости от чистоты согласно ГОСТ 859-78.

Таблица 1

Марка меди в зависимости от чистоты

Марка МВЧк M00 М0 Ml М2 МЗ
Содержание 99,993 99,99 99,95 99,9 99,7 99,5

После обозначения марки указывают способ изготовления меди: к –катодная, б – бескислородная, р – раскисленная. Медь огневого рафинирования не обозначается.

М00к – технически чистая катодная медь, содержащая не менее 99,99% меди и серебра.

МЗ – технически чистая медь огневого рафинирования, содержит не менее 99,5% меди.

1.1 Сплавы меди

В технике применяют 2 большие группы медных сплавов: латуни и бронзы.

1.1.1 Латуни

Латуни – сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Медные сплавы, предназначенные для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием – сплавами, обрабатываемыми давлением.

Латуни дешевле меди и превосходят ее по прочности, вязкости и коррозионной стойкости. Обладают хорошими литейными свойствами.

Латуни, применяются в основном для изготовления деталей штамповкой, вытяжкой, раскаткой, вальцовкой, т.е. процессами, требующими высокой пластичности материала заготовки. Из латуни изготавливаются гильзы различных боеприпасов.

В зависимости от числа компонентов различают простые (двойные) и специальные (многокомпонентные) латуни.

Простые латуни содержат только Cu и Zn.

Специальные латуни содержат от 1 до 8% различных легирующих элементов (Л.Э.), повышающих механические свойства и коррозионную стойкость.

Al, Mn, Ni повышают механические свойства и коррозионную стойкость латуней. Свинец улучшает обрабатываемость резанием. Кремнистые латуни обладают хорошей жидкотекучестью и свариваемостью.

1.1.2 Бронзы

Бронзы – это сплавы меди с оловом (4-33% Sn), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой, фосфором и другими элементами.

Бронзы – это всякий медный сплав, кроме латуни. Это сплавы меди, в которых цинк не является основным легирующим элементом. Общей характеристикой бронз является высокая коррозионная стойкость и антифрикционность (от анти- и лат. frictio- трение). Бронзы отличаются высокой коррозионной устойчивостью и антифрикционными свойствами. Из них изготавливают вкладыши подшипников скольжения, венцы червячных зубчатых колес и другие детали.

Высокие литейные свойства некоторых бронз позволяют использовать их для изготовления художественных изделий, памятников, колоколов.

По химическому составу делятся на оловянные бронзы и без оловянные (специальные).

Оловянные бронзы обладают высокими механическими, литейными, антифрикционными свойствами, коррозионной стойкостью, обрабатываемостью резанием, но имеют ограниченное применение из-за дефицитности и дороговизны олова.

Специальные бронзы не только служат заменителями оловянных бронз, но и в ряде случаев превосходят их по своим механическим, антикоррозионным и технологическим свойствам:

Алюминиевые бронзы – 5-11% алюминия. Имеют более высокие механические и антифрикционные свойства, чем у оловянных бронз, но литейные свойства – ниже. Для повышения механических и антикоррозионных свойств вводят железо, марганец, никель (например, БрАЖ9-4). Из этих бронз изготовляют различные втулки, направляющие, мелкие ответственные детали.

Бериллиевые бронзы содержат 1,8-2,3% бериллия отличаются высокой твердостью, износоустойчивостью и упругостью (например, БрБ2, БрБМН1,7). Их применяют для пружин в приборах, которые работают в агрессивной среде.

Кремнистые бронзы – 3-4% кремния, легированные никелем, марганцем, цинком по механическим свойствам приближаются к сталям.

Свинцовистые бронзы содержат 30% свинца, являются хорошими антифрикционными сплавами и идут на изготовление подшипников скольжения.

Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие количество элемента в процентах.

– БрА9Мц2Л – бронза, содержащая 9% алюминия, 2% Mn, остальное Cu («Л» указывает, что сплав литейный);

– ЛЦ40Мц3Ж – латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu;

– Бр0Ф8,0-0,3 – бронза содержащая 8% олова и 0,3% фосфора;

– ЛАМш77-2-0,05 – латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В несложных по составу латунях указывают только содержание в сплаве меди:

– Л96 – латунь содержащая 96% Cu и ~4% Zn (томпак);

– Лб3 – латунь содержащая 63% Cu и 37% Zn.

Высокая стоимость меди и сплавов на ее основе привела в 20 веке к поиску материалов для их замены. В настоящее время их успешно заменяют пластиками, композиционными материалами.

2. Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета. Температура плавления 650°С. Алюминий имеет кристаллическую ГЦК решетку. Алюминий обладает электрической проводимостью, составляющей 65% электрической проводимости меди. Алюминий занимает 3 место по распространению в земной коре после кислорода и кремния. Алюминий устойчив против атмосферной коррозии благодаря образованию на его поверхности плотной окисной пленки. Наиболее важной особенностью алюминия является низкая плотность – 2,7г/см 3 против 7,8г/см 3 для железа и 8,94г/см 3 для меди. Имеет хорошую тепло- и электропроводность. Хорошо обрабатывается давлением.

Маркируется буквой А и цифрой, указывающей на содержание алюминия. Алюминий особой чистоты имеет марку А999 – содержание Al в этой марке 99,999%. Алюминий высокой чистоты – А99, А95 содержат Al 99,99% и 99,95% соответственно. Технический алюминий – А85, А8, А7 и др.

Применяется в электропромышленности для изготовления проводников тока, в пищевой и химической промышленности. Алюминий не стоек в кислой и щелочной среде, поэтому алюминиевая посуда не используется для маринадов, солений, кисломолочных продуктов. Применяется в качестве раскислителя при производстве стали, для алитирования деталей с целью повышения их жаростойкости. В чистом виде применяется редко из-за низкой прочности – 50 МПа.

2.1 Деформируемые алюминиевые сплавы

В зависимости от возможности термического упрочнения деформируемые алюминиевые сплавы подразделяются на не упрочняемые и упрочняемые термической обработкой.

К сплавам, неупрочняемым т/о относятся сплавы Al c Mn (АМц1), и сплавы Al c Mg (AМг 2, АМг3). Цифра – условный номер марки.

Эти сплавы хорошо свариваются, обладают высокими пластическими свойствами и коррозионной стойкостью, но невысокой прочностью, Упрочняются эти сплавы нагартовкой. Сплавы данной группы нашли применение в качестве листового материала, используемого для изготовления сложных по форме изделий, получаемых холодной и горячей штамповкой и прокаткой. Изделия, получаемые глубокой вытяжкой, заклепки, рамы и т.д.

Сплавы, упрочняемые т/о, широко применяются в машиностроении, особенно в самолетостроении, т.к. обладают малым удельным весом при достаточно высоких механических свойствах. К ним относятся:

Дуралюмины – основные легирующие компоненты - медь и магний:

Д1 – лопасти воздушных винтов, Д16 – обшивки, шпангоуты, лонжероны самолетов, Д17 – основной заклепочный сплав.

Высокопрочные сплавы – В95, В96 наряду с медью и магнием содержат еще значительное количество цинка. Применяют для высоконагруженных конструкций.

Сплавы повышенной пластичности и коррозионной стойкости – АВ, АД31, АД33. Лопасти вертолетов, штампованные и кованые детали сложной конфигурации.

2.2 Литейные алюминиевые сплавы

Наиболее широко распространены сплавы системы Al-Si- силумины.

Силумин имеет сочетание высоких литейных и механических свойств, малый удельный вес. Типичный силумин сплав АЛ2 (АК12) содержит 10-13% Si, Подвергается закалке и старению (АК7 (АЛ9), АК9 (АЛ4).

3. Цинк и его сплавы

Цинк – вязкий металл голубовато-серого цвета. Металл с небольшой температурой плавления (419 градусов С) и высокой плотностью (7,1 г/см 3). Прочность цинка низкая (150 МПа) при высокой пластичности.

Цинк применяют для горячего и гальванического оцинкования стальных листов, в полиграфической промышленности, для изготовления гальванических элементов. Его используют как добавку в сплавы, в первую очередь в сплавы меди (латуни и т.д.), и как основу для цинковых сплавов, а также как типографский металл.

В зависимости от чистоты цинк делится на марки ЦВ00 (99,997% Zn), ЦВ0 (99,995% Zn), ЦВ (99,99% Zn), Ц0А (99,98% Zn), Ц0 (99,975% Zn), Ц1 (99,95% Zn), Ц2 (98,7% Zn), ЦЗ (97,5% Zn).

Цинковые сплавы широко применяются в машиностроении и разделяются на сплавы для литья под давлением, в кокиль, для центробежного литья и на антифрикционные сплавы. Основными легирующими компонентами цинковых сплавов являются алюминий, медь и магний. Отливки из цинковых сплавов легко полируются и воспринимают гальванические покрытия.

Состав, свойства и применение некоторых цинковых сплавов:

– ЦА4 содержит 3.9-4.3%Al, 0,03-0,06% Mg, временное сопротивление 250-300 МПа, пластичность 3-6%, твердость 70-90HB). Применяется при литье под давлением деталей, к которым предъявляются требования стабильности размеров и механических свойств.

– ЦАМ10-5Л содержит 9,0-12,4%Al, 4,0-5,5% Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа, пластичность не менее 0,4%, твердость – не менее 100HB. Из сплава изготавливают подшипники и втулки металлообрабатывающих станков, прессов, работающих под давлением до 200-10000 Па.

– ЦАМ9-1.5 содержит 9,0-11,0%Al, 1,0-2,0%Cu, 0,03-0,06% Mg, временное сопротивление не менее 250 МПа, пластичность не менее 1%, твердость не менее 90HB. Сплав применяют для изготовления разных узлов трения и подшипников подвижного состава.

4. Магний и его сплавы

Магний – металл серебристо-белого цвета. Температура плавления магния 650°С. Кристаллическая решетка гексагональная. Отличается низкой плотностью (1,74 г/см 3), хорошей обрабатываемостью резанием, способностью воспринимать ударные и гасить вибрационные нагрузки.

В зависимости от содержания примесей установлены следующие марки магния: Мг96 (99,96% Mg), Мг95 (99,95% Mg), Мг90 (99,90% Mg), магний высокой чистоты (99,9999% Mg).

Магний химически активный металл, легко окисляется на воздухе. Чистый магний из-за низких механических свойств (временное сопротивление 100-190 МПа, относительное удлинение 6-17%, твердость 30-40НВ) как конструкционный материал практически не применяют. Его используют в пиротехнике, в химической промышленности для синтеза органических соединений, в металлургии различных металлов и сплавов как раскислитель, восстановитель и легирующий элемент.

4.1 Сплавы на основе магния

Достоинством магниевых сплавов является высокая удельная прочность. Предел прочности магниевых сплавов достигает 250-400 МПа при плотности менее 2 грамм на кубический сантиметр. Сплавы в горячем состоянии хорошо куются, прокатываются и прессуются. Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), хорошо шлифуются и полируются. Удовлетворительно свариваются контактной и дуговой сваркой в среде защитных газов.

К недостаткам магниевых сплавов наряду с низкой коррозионной стойкостью и малым модулем упругости следует отнести плохие литейные свойства, склонность к газонасыщению, окислению и воспламенению при их приготовлении.

По механическим свойствам магниевые сплавы подразделяют на сплавы невысокой и средней прочности, высокопрочные и жаропрочные, по склонности к упрочнению с помощью термической обработки – на упрочняемые и неупрочняемые.

Деформируемые магниевые сплавы. В сплавах МА1 и МА8 основным легирующим элементом является марганец. Термической обработкой эти сплавы не упрочняются, обладают хорошей коррозионной стойкостью и свариваемостью. Сплавы МА2-1 и МА5 относятся к системе Mg-Al-Zn-Mn. Алюминий и цинк повышают прочность сплавов, придают хорошую технологическую пластичность, что позволяет изготовлять из них кованные и штампованные детали сложной формы (крыльчатки и жалюзи капота самолета). Сплавы системы Mg-Zn, дополнительно легированные цирконием (МА14), кадмием, редкоземельными металлами (МА15, МА19 и др.) относят к высокопрочным магниевым сплавам. Их применяют для несвариваемых сильно нагруженных деталей (обшивки самолетов, деталей грузоподъемных машин, автомобилей, ткацких станков и др.).

Литейные магниевые сплавы. Наибольшее применение нашли сплавы системы Mg-Al-Zn (МЛ5, МЛ6). Они широко применяются в самолетостроении (корпуса приборов, насосов, коробок передач, фонари и двери кабин и т.д.), ракетной технике (корпуса ракет, обтекатели, топливные и кислородные баки, стабилизаторы), конструкциях автомобилей, особенно гоночных (корпуса, колеса, помпы и др.), в приборостроении (корпуса и детали приборов). Вследствие малой способности к поглощению тепловых нейтронов магниевые сплавы используют в атомной технике, а благодаря высокой демпфирующей способности – при производстве кожухов для электронной аппаратуры.

Более высокими технологическими и механическими свойствами обладают сплавы магния с цинком и цирконием (МЛ 12), а также сплавы, дополнительно легированные кадмием (МЛ8), редкоземельными металлами (МЛ9, МЛ10). Данные сплавы применяют для нагруженных деталей самолетов и авиадвигателей (корпусов компрессоров, картеров, ферм шасси, колонок управления и др.).

Магниевые сплавы подвергаются следующим видам термической обработки: Т1 – старение, Т2 – отжиг, Т4 – гомогенизация и закалка на воздухе, Т6 – гомогенизация, закалка на воздухе и старение, Т61 – гомогенизация, закалка в воду и старение.

Заключение

Цветные металлы и их сплавы нашли широкое применение в строительстве благодаря своей прочности, легкости, высокой антикоррозийной стойкости. Они подразделяются на легкие (в большинстве своем на основе алюминия) и тяжелые (на основе меди, латуни, олова и т.п.).

Цветная металлургия является одной из наиболее конкурентоспособных отраслей промышленности России, причем российские компании в ряде подотраслей (алюминиевой, никелевой, титановой) входят в группу мировых лидеров. Достижения участников рынка в мировом масштабе стало возможным благодаря активной инвестиционной политике предприятий отрасли. Так, например, объем инвестиций в 2006 году по сравнению с показателями 2000 года увеличился в 2,5 раза, и составляет 80 млрд. руб., а объем иностранных инвестиций вырос почти в 10 раз, достигнув 4,5 млрд. долл. При этом суммарный объем инвестиций в строительство и реконструкцию металлургических мощностей составляет в 2007-2010 гг. более 220 млрд. руб.

1. Колачев Б.А., Ливанов В.А., Елагин В.И. Металловедение и термическая обработка цветных металлов и сплавов. – М.: Металлургия, 1981. – 416 с.

2. Материаловедение: Учебник для высших технических учебных заведений / Б.Н. Арзамасов, И.И.Сидорин, Г.Ф.Косолапов и др.; под общ. ред. Б.Н. Арзамасова. // 2-е изд. – М.: Машиностроение, 1986. – 384 с.

3. Гуляев А.П. Металловедение. – М.: Металлургия, 1986. – 544 с.

4. Материалы будущего: Пер. с нем./ Под ред. А. Неймана. – Л.: Химия, 1985. – 240 с.

5. Венецкий С.И. Рассказы о металлах. – М.: Металлургия, 1985. – 240с.

Магний – металл светло-серого цвета, обладающий наименьшим удельным весом среди металлов – 1,74 г/см 3 . Имеет гексагональную кристаллическую решетку. Температура плавления – 651°С. Несмотря на образование на поверхности тонкой пленки окиси магния (МgО), металл легко окисляется во влажной атмосфере, быстро разрушается под действием морской воды и большинства минеральных кислот, при повышении температуры интенсивно окисляется и может самовоспламеняться.

Механические свойства магния невысоки: он обладает небольшой прочностью и малой пластичностью: σ В = 190 МПа, σ 0,2 = 90 МПа, δ = 18 %. Такие свойства магния ограничивают его применение как конструкционного материала. Технический магний выпускается трех марок: МГ90
(99,9 % Мg), МГ95 (99,95 % Мg), МГ96 (99,96 % Мg). Используется технический магний как пиротехнический материал, в химических производствах, как раскислитель и модификатор в металлургии и для получения сплавов на его основе.

Основными легирующими элементами в магниевых сплавах являются марганец, алюминий и цинк. Алюминий и цинк оказывают большое влияние на прочность и пластичность магниевых сплавов: максимальные значения механических характеристик достигаются при введении в сплав
6–7 % алюминия или 4–6 % цинка. Эти элементы образуют с магнием упрочняющие фазы Мg 4 Аl 3 и МgZn 2 , выделяющиеся в мелкодисперсном виде после закалки со старением. Цирконий, титан, кальций, церий, лантан измельчают зерно, раскисляют сплав, повышают его жаропрочность.

Магниевые сплавы хорошо обрабатываются резанием и свариваются различными видами сварки, удовлетворительно работают при низких температурах. Для повышения механических свойств сплавы на основе магния могут подвергаются различным видам термической обработки:

· диффузионному отжигу при температуре 400–490 °С в течение 10–24 часов для устранения ликвации в литых сплавах (выравнивания химического состава по объему зерен);

· рекристаллизационному отжигу при температуре 250–350 °С для снятия наклепа; при этом отжиге уменьшается анизотропия механических свойств, возникшая при пластической деформации;

· закалке со старением при температуре 150–200 °С;

· гомогенизации (закалке) при 380–540 °С.

По технологии изготовления изделий магниевые сплавы разделяются на литейные МЛ и деформируемые МА.

В литых магниевых сплавах повышения механических свойств добиваются измельчением зерна модифицированием добавками мела или магнезита. При литье в песчаные формы в смесь вводят специальные добавки (фториды алюминия) для уменьшения окисления магния.

Среди литейных магниевых сплавов широкое применение имеют сплавы МЛ5, МЛ6, МЛ10, МЛ12 и др. Химический состав и свойства приведены в таблице 16.2.

Сплавы системы «Mg – Al – Zn» (МЛ4, МЛ5, МЛ6) – отличаются наилучшими литейными свойствами: малой линейной усадкой, хорошей жидкотекучестью, малой склонностью к образованию рыхлот. Из этих сплавов изготавливают сложные ответственные отливки. Структура этих сплавов состоит из δ-твердого раствора алюминия и цинка в магнии с включениями по границам зерен соединения Мg 17 Al 12 (в виде мелких частиц голубоватого цвета). После литья сплавы подвергают гомогенизационному отжигу.


Таблица 16.2

Химический состав и механические свойства магнитных сплавов

Жаропрочные магниевые сплавы (МЛ9 – МЛ11, МЛ14, ВМЛ–1 и ВМЛ–2) разработаны на основе системы «Мg – Zn – Zr» и используются для длительной эксплуатации при температурах 250–350 °С и кратковременной – до 400 °С. Жаропрочные свойства определяются присутствием интерметаллидных фаз. Эти сплавы упрочняются с помощью закалки и старения. Температура закалки от 540–545 °С, охлаждение в воде при температуре 80 °С, старение при 205 °С.

Жаропрочные магниевые сплавы часто применяются для деталей, подвергающихся одновременному воздействию статических и усталостных нагрузок. На рисунке 16.7 приведена зависимость пределов ползучести и выносливости сплава МЛ10 от температуры.

Коррозионная стойкость магниевых жаропрочных сплавов зависит от их состава, структуры и содержания примесей. Эти сплавы обладают хорошими технологическими литейными свойствами, высокой герметичностью (до 450 атм.), способностью сохранять высокую стабильность размеров. Отличаются малой склонностью к образованию микрорыхлот, горячих трещин в отливках.

Магний


Магний - чрезвычайно реакционноспособный металл; жадно соединяется с кислородом, особенно при повышенных температурах. Как и алюминий, магний образует защитную окисную пленку, но непрочную, поэтому он и его сплавы сильно подвержены коррозии.
Магний кристаллизуется в гексагональной системе. Гексагональная решетка в отличие от кубической имеет не несколько, а только одну плоскость скольжения. Этим и объясняется невысокая пластичность магния и большая разница в свойствах в зависимости от направления и величины зерна.
Меньший удельный вес магния (1,74), лучшая обрабатываемость его резанием и стойкость к восприятию больших ударных нагрузок, чем алюминия, способствуют применению магния как конструкционного материала, но его низкая коррозионная стойкость, невысокая пластичность, низкий предел текучести и пониженные литейные свойства в известной мере снижают ценность этого металла.
В промышленности магний применяется как раскислитель, для магниетермических процессов, в виде порошков и для производства сплавов. В чистом виде как конструкционный материал магний не применяется из-за невысокой прочности.
Термическая обработка магниевых сплавов, в отличие от термической обработки алюминиевых, дает незначительный эффект упрочнения.
В связи с тем, что сплавы магния легко воспламеняются, приходится принимать специальные меры противопожарной безопасности при работе с ними. Химический состав магния, выпускаемого в России, и его марки приведены в табл. 19.
Предел прочности литого магния 8.5-13 кг/мм2, относительное удлинение 3-6%, а твердость по Бринелю 25-30 кг/мм2.
В техническом магнии в качестве примесей присутствуют железо. никель, медь, кремний, натрий и калий.
Железо плохо растворяется в магнии (при 650-655° растворимость железа составляет 0,025%), но даже очень малые количества железа значительно снижают коррозионную стойкость магния и его сплавов. а также увеличивают пористость магния.

Кремний в количестве свыше 0,03% снижает предел прочности и относительное удлинение магния и его сплавов. Медь уменьшает коррозионную стойкость и несколько снижает механические свойства магния.
Натрий и калий - также вредные примеси в магнии и его сплавах. Натрий вызывает горячеломкость (при содержании его 0,07%), отчего становится невозможной обработка магниевых сплавов. Калий понижает механические свойства при повышенных температурах, увеличивает усадку и пористость магниевых оплавов.
Алюминий сильно повышает прочность магния, улучшает его литейные свойства, но понижает пластичность.
Максимальная добавка алюминия в магний обычно не превышает 9-11%, что определяется пределом растворимости магния в алюминии (см. рис. 6).
Бериллий, вводимый в небольших количествах (до 0,07%), понижает способность магниевых сплавов к окислению и предохраняет жидкий металл от возгорания при разливке. Кадмий повышает ударную вязкость магниевых сплавов.
Марганец, как и в алюминиевых сплавах, повышает прочность, способствует измельчению зерна, а главное - улучшает стойкость магния против коррозии.
Цинк повышает механические свойства магния и способствует появлению эффекта упрочнения, правда, незначительного. Цирконий повышает механическую прочность и пластичность магния. Церий и торий повышают жаропрочность магниевых сплавов. Иногда для повышения плотности структуры, снижения окисляемости и для измельчения зерна в магниевые сплавы вводят незначительные количества кальция (0,05-0.2%).

Магниевые сплавы


Промышленные магниевые сплавы разделяются на литейные и деформируемые.
Химический состав, механические свойства и примерное назначение некоторых магниевых сплавов приведены в табл. 20.

Понравилась статья? Поделитесь ей
Наверх